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Gyrotron Coaxial Cylindrical Resonators
with Corrugated Inner Conductor:
Theory and Experiment

Joaquim J. Barroso, Rafael A. Céa, and Pedro Jésde Castro

Abstract—Gyrotron coaxial resonators with a longitudinally (~170 GHz) to meet the electron cyclotron resonance heating
slotted inner cylinder are examined analytically using a surface requirements for high-magnetic-field plasma configurations
impedance model, from which expressions for the electromagnetic g,y a5 the international thermonuclear experimental reactor

field, ohmic quality (Q) factor, and characteristic equation of the .
transverse eigenvalues..,, are obtained. The major attributes (ITER) [2], the spectrum of eigenmodes turns out so dense

of such resonators are expressed by the dependence of, , on that it is necessary to employ still more precise methods
the parameter C—defined as the ratio of the outer to inner of mode selection. Additional potentialities of rarefying the
radii of the coaxial structure. In that connection, the effect of ejgenfrequency spectrum as well as lowering the total quality
the corrugation parameters onx.. , is particularly investigated Ay ¢40tor of the competing modes can be achieved with the
on the basis of an expression derived for the slope function | . Lo . -
dx,, ,,/dC. It is shown that the .. ,(C) curve may either introduction of a coaxial insert into the open empty-cylmdnc_al
exhibit oscillatory behavior or present a flat portion over a wide resonator [3], [4]. Such a method of electrodynamic selection
range of C' depending on the corrugation parameters chosen. arises from the dependence of the transverse eigenvglugs
The theory is checked against experiment in which resonant upon the coaxial paramete®, defined as the ratio of the

frequencies and total Q factors were measured for TE modes . . . .
operating in the range of 816 GHz in a coaxial cavity with outer to inner radii of the coaxial resonator. Modes with close

40 slots. Good agreement is found in that the magnitude of the vglues Omepv but distinct derivativesixfnp/dC, Will have
relative error in frequency is less than 0.5%. Corrugated coaxial diverse axial structures and, as result, different diffracfie
resonators proves to be relevant to megawatt gyrotrons where factors. It follows that an appropriate choice of the geometry
highly selective cavities are required to ensure high conversion f the inner conductor leaves the operating mode essentially
efficiency. . .
unaffected by the presence of the insert, whereas potentially
Index Terms—Corrugated coaxial cavities, gyrotron cavities, competing modes have their diffractigy factors decreased.
surface impedance model. Selective properties of coaxial cylindrical resonators can be
further extended by the introduction of longitudinal corruga-
|. INTRODUCTION tions on the inner conductor. Different from smooth coaxial
N THE development of high-power high-frequency gypa\(|t|es, a remarkable pepuhan_ty of the funCt'%’!’(C)’
. . o ) > which results from the consideration of a corrugated inner wall,
rotrons, a major design constraint is the ohmic heati

n . .
density of the cavity walls. To circumvent this problem, z';\g the existence of extremes for circularly symmetfit, ,

very large (in the wavelength scale) overmoded cavity mum[odes upon selecting suitable corrugation parameters, namely,

be used in order to keep the ohmic losses at the accepta%f%smt depth and corrugation period. Thus, corrugated coaxial

limit of 3-4 kw/cn? for currently available cooling tech- cavities offer greater flexibility of handling mode-selection

nigues. As the resonator cross section gets larger, the spectﬂfﬂp Igmhs n gt))/rotron_ reso_nators._AIthoungl soEr)ne gseful_ tﬂe&gn
of eigenfrequencies becomes densely populated, Ieadingc%erla ave been given In previous works [ ]’.[ I nerther a
the possibility of mode interaction [1]. When simultaneoudore general consideration of corrugated coaxial cavities nor

resonant interaction between several modes and the elect?BﬁC'f'C cold tests to validate the theory have yet been done.

beam takes place, the gyrotron operation may be unstablel.n this paper, we make a systematic study of corrugated

In addition, multimode oscillation causes a deterioration &pamal QWOUO” cavmes_ by exz?,“ﬂ.mg tEe ;OIe plgyed byfthe

the coherence and directivity of the generated radiation, giv%%"ugsﬁ'_on parqme.tersdlcr; estad IShing t € epehn enge,pf

rise to trapped modes and, in general, decreases the gyrof?Bﬁj' This question is addressed in Secnon Il, where asurtace-

efficiency. impedance model is used to describe the boundary conditions
An effective means in mode selection is provided by adt the corrugated inner wall. An explicit expression for the

justing the electron-beam radius to ensure strong coupliﬁg)pe fun'ctlor.ldxmp/dc 'S .then obta|_ned, which prowdes.

between the operatififE,,,, mode and the beam. However a&dded insight into the selective properties of corrugated coaxial

the gyrotron is scaled to megawatt powers at high frequen_?:?‘(ities' In Section_ I, tak_ing into account the RF field
inside the corrugation region, the energy-storage problem
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The authors are with the Laboratory of Plasma, National Institute for Spaé;j f A . . h | "

Research (INPE), 12201-97@& Jog dos Campos, & Paulo, Brazil. actor. An experiment to .V?”fy the values .0 reso_nant
Publisher Item Identifier S 0018-9480(98)06168-7. frequency and total) factor anticipated by theory is described

0018-9480/98$10.001 1998 IEEE



1222 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 9, SEPTEMBER 1998

in Section IV, where measured and calculated results are
compared. Section V contains the conclusions of our work.

Il. EIGENVALUES IN CORRUGATED COAXIAL
CYLINDRICAL RESONATORS , 4

Let us consider a corrugated cylindrical cavity with ge- ' ' /
ometry, as shown in Fig. 1, where the coaxial insert is a ’ '
longitudinally slotted cylinder. Instead of using space harmon-
ics [7] in the formulation of the electromagnetic-field problem,
we shall proceed with a simpler method, usually referred to
as the surface-impedance approach [8]. The method relies on

the assumption that the ratio between the tangerﬁahnd ' Y

H fields can be expressed as an impedance-type boundary v

condition, and that such a ratio must be given unambiguous

in terms of the geometry of the corrugated wall. Under the

condition that the slot width is less than a half-wavelength

of the operating mode, which means that the field variation

along a slot interval in negligible, the corrugations may bgg 1. cross section of a corrugated coaxial cylindrical cavity. (The cor-
represented by a homogeneous reactive surface &t R; rugation periods, slot width !, number of slotsV, and slot angle2d, are
(see Fig. 1). The approximation improves as the number '§fated byNo./m = 1/s.)

slots per wavelength increases and the thickness of the ridge

decreases. Therefore, when space harmonics are neglected, the, i Jdey
. . ; hp= — — — (3¢c)
field components fofl'E,,,, modes in the annular region are wpo Oz
those in a coaxial guide with smooth walls where N denotes the number of slots ands the slot index.
B OV (7, ) V(z) (1a) In the wall reactance model, it is assumed thatcross each
¢ ar z slot is constant and, further, that the field at any slot differs
B - 1 0W,,,(r, @) v 1b from the field at a neighboring slot only by a constant phase
¥ (2) (I6) " factorei=/Nem with the total phase shift around the periodic

—i structure being a multiple di= (Floquet's theorem). Notice
H. = wito kLW mp(r, $)V(2) (1¢) in (3a) thatey, = 0 atr = Ry.

] The characteristic equation for the transverse wavenumber
where ¥,,,(r, ¢) = AppCrm(kir)e™? with the cylinder s obtained by applying continuity conditions to the surface
function of orderm reactance at = R;. Thus, the reactanc& looking into the
Con(krr) = T (kom)Y, (kL Ro) — Yin(kir)J! (kLRy) (2) interaction space from the slots across the boundary is matched

to the reactance viewed from interaction space and averaged
where .J,, andY,, are, respectively, Bessel functions of tharound the circumference at= R;
first and second kinds with primes denoting differentiation B
with respect to the argumentt,,,,, is a normalization parame- —— =X = —<h—“5>. (4)
ter to be determined in Section M{x) is a function expressed *
in volts describing the longitudinal profile of the fields, and’hen, using (2)—(4) and letting~ &, as gyrotron resonators
k1 = xmp/Ro is the transverse eigenvalue. We have assumeplerate close to cutoff, we obtain at= R;
a harmonic variatior‘“* for the electromagnetic field. ,

Provided thatl < A/2, there is no azimuthal propagation Con(k1r)lr=r, = —(ws)Con(kL7)]o=R, )
of energy inside the slots, as high-order TE modes are belgere 1, = i(eg/h-)/\/1o/col-=r; is a surface reactance
cutoff. ThUS, we shall take in the slots Only the lowest Ordeformaﬁzed to the impedance of free space and
TE mode, which has the following components:

1 27
e = k1T (kL Fi) ) =5 [ wie)ds (6)
Jl(kJ_T)Yl(kJ_Rd) - Yi(kJ_7)J1(I%J_Rd)

g where
JO(kJ_Ri)Yl(kJ_Rd) — YE)(/{}J_RZ)Jl(/{}J_Rd) 27rq 27rq
. V(z)ei(%/N)qm (3a) w(g) = {ws, N 0< < N + 6
h, = ik} U, (ky R) 0, for all other values ofp
Who

with 26 denoting the slots angle. In this way, the corrugated

. Jolkin)Yi (ki Ra) — Yo(kir)Ji(kLRa) surface is represented in terms of a surface boundary condition
Jo(k 1 R)Y1(ki Ra) — Yo(ky R;)J1 (k1 Ra) involving only the interaction space fields, thereby converting

-V (z)e! 3 /N)am (3b) a two-media problem into a single one.
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effect is that the eigenvalue for the corrugated cavity is limited
as C — 1. This limiting value can be easily estimated by

30 \ ' ' ' noting that asC — 1, the numerator of the right-hand
25k Vs=020 | side of (7) tends to zero. Then, we must have= 0, i.e.,
» T3 06mp)Ys (X (1= Ri)) = Yy (xop(L— A/ Ri)) Ty (Xomp) =
2ol | \9Rz00 | 0. Using the asymptotic forms of Bessel and Neumann func-
. AN tions for large arguments, we arrive @h(x,,,d/R;) = 0
S T i or xmp = (p— 1)w/(d/R;) wherep is an integer denoting
RN S T the radial-mode number. For= 3 andd/R; = 0.4, we see
1022*///? - ] that 6,3 =~ 57 at C = 1, as shown in Fig. 2. The mode
L propagating radially in the annular-sector resonator strongly
5 5 A . s resembles th&'E;, mode of the rectangular guide, although

modified by the convergence of the slot sides.

We also note in Fig. 3 that all the curves intersect regularly
at some points and, moreover, fots = 0.2, the x(C) curve
flattens with its slope approaching zero at the intersection point
Py. To investigate the effect on thg C) curve shape, varying
the corrugation parameters, we shall look at the extremes of

Fig. 2. TEg, 3—mode eigenvalua(C) curves withd/R; as parameter.

30 ; . ; the eigenvalue curves. By expressing the derivative,of,
‘ 4R =0.20 with respect toC' in the form
1 dx _  9FjoC (8)
dC 9F/dz
7 where
- %% + w[In ()Y (2) = 5 ()Y (y)]
10 ‘ . . =0 9)
1 2 3 4 5
Cc with
we b S (W)Y1(ya) — Yi(y)J1(ya) (10)
Fig. 3. TEg, 3—mode eigenvalug (C) curves withl/s as parameter. T s Jo(y)Yl(yd) — Yo(y),]l (Ud)
_ . _ we arrive at
Noting that(w;) = (I/s)ws, (5) is rewritten as AXomp X —f(y)
S (@)Y (y) = S ()Y () dc C [ + T’
Tm()Y 5 (x) — J1, (@)Y, (@# —m?) , - fv)
rn(y) rn(x) rn(x) rn(y) C‘]rn(x)
_ U S(w)Yi(ya) — Yi(y)J1(ya) (11)

= 5 T (va) = Yo(u)a(wa) ) where

which gives the characteristic equation for the transversef(y) = y?w? (1 - ;) + 22 (1 - ;) + £yZG?(yd) —m?
eigenvaluesy,,, = k1 Ry = x, wherey = x,u,/C with o (12)
C = Ro/R; andyy = y(1 — d/R;).
To examine the effects of the corrugation parametergith
namely, the relative slot-deptti/R; and the parametet/s o) 4/n
defined as the slot-opening normalized to the ridge-slot YaGYya) = .
period s (Fig. 1), we plot in Figs. 2 and 3 th&Es_3-mode Si(pa)Yo(y) = Jo(y)Vi(va)
eigenvalue curveg(C) having, respectivelyd/R; andl/s as As will be shown in Section IIl, the denominator of the right-
parameters. Firstly, we see that théC) curves are shifted hand side of (11) is always positive. Hence, the sign of the
downward relative to the eigenvalue curves for the smoottlerivativedy/dC is opposite to the sign of (y) and, further,
wall case(d/R; = 0). This means that the cutoff frequencythe condition for obtaining an extremum of C) is given
is decreased since the electric field penetrates into the ddgt f(y) = 0. To illustrate this point, we show in Fig. 4 the
region, thus increasing the resonating volume. This is similamction yf(y) corresponding to the corrugation parameters
to the ohmic effect in a smooth cavity, in which a resonaml/ R; = 0.4, /s = 0.2, and azimuthal number. = 6. The
frequency in a lossy cavity is always less than in a cavity witteros ofy f(y) are assigned by the labels framto £ and, for
perfectly conducting walls. comparison purposes, the dashed curve represents the function
Secondly, different from the smooth-wall case, for whicin the smooth-wall casév = 0). Examining this plot, we can
the eigenvalue increases without limit @— 1, a noticeable anticipate the behavior of the eigenvalue curves for the family

(13)
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Fig. 4. (a) Functionyf(y) associated with corrugation parametdys?; = Fig. 5. (&) Functioryf(y) associated with corrugation parametdfsR; =

0.4, 1/s = 0.2, and azimuthal numbem = 6. (The corresponding zeros 0.2,1/s = 0.4, and azimuthal number. = 6. (The dashed line represents the
are labeled from4 to F and the dashed line represents the function for thiinction for the smooth wall cagev = 0). For these corrugation parameters,
smooth wall casgw = 0). The plots are shown in greater detail in (b),the function possesses only two zeros and, as shown in (b), the second zero
where the second zero labeled Bsis shifted to higher values relative to is shifted to lowery values relative to thev = 0 case.)

the w = 0 case.)

in (10), we havew = (I/s), tan (y4/R;) and (11) reduces to
of modesTEg, ,, with radial numberp > 1. As the variable

1y is the ratio of eigenvalug to parameterC, the first zero J —<1 — dZ/RZ)

atya = 0, shown in the expanded plot of Fig. 4(b), implies Xmp _ Xmp 5 — /s (14)

that the eigenvalue curves tend asymptotically(to— oo e ¢ at-m® Jaly) <1 _ d/Ri)

with zerody/dC slope. This limit corresponds to the hollow z? I3 () lfs

cylindrical resonator for which the determinantal equation (s |w| — oc. Recalling that the denominator of the right-hand

reduces toJ) (z) = 0. side of (14) is positive, we see f@d/R;)/(I/s) > 1 that the
Sinceyf(y) < 0in the rangeys < y < yg, as shown in derivativedy /dC is positive and, accordingly;f(y) diverges

Fig. (4), the slopelx/dC is positive in this range witlys = to minus infinity, as shown in Fig. 4; the converse occurs for

6.31 corresponding to the first local minimum on théC) (d/R;)/(l/s) < 1 and, as|w| — oo, the limiting value of
curve. Fromyp to yc, the derivativedy /dC is negative and ¥f(y) is +oo, as shown in Fig. 5. In the particular case when
ye = 11.29 should correspond to a local maximum. Furthefd/R:)/(l/s) = 1, we havedy/dC = 0 associated with the
yp = 12.51 gives a minimumyp = 19.17 is a maximum, and Singular points off(y).

so on. For this case, we may infer, therefore, without solving NOW considering the corrugation parametefst; = 0.4
the characteristic equation (9), that the functipaC) has a@nd!/s = 0.2, shown in Fig. 6, we examine the eigenvalue
an oscillatory behavior with alternating minima and maximaﬂ:,urves of modeSEs, ,, with r.ad|al'|nd|ces ranging frorp = 1
with the oscillation period shortening gsincreases. On the p=d Th? dashed straight lines, labeled frafp to yr,
other hand, the function f(y) displays a different behavior are drawn with slopes that correspond to the zerog )

hen the followi ’ tafdR — 0.20 and in Fig. 4. If we make a correlation between these plots, it is
when the following corrugation parametefgf; = 0.20 an aé)parent that the first minimum of the(C) curves lies on

[/s = 0.40 are considered. In this case [see Fig. 5(a)], theL — 45, whereas the first local maxima are joined oy yc.
exists only one minimum; after reaching this minimum at |, Fig. 7, we plot the eigenvalue curves fdiEs , modes

y = 5.79 [see Fig. 5(b)] the curvesi, ,(C) with p > 1 consideringd/R; = 0.20 and /s = 0.40, which yield only

should exhibit negative slope. one point of minimum (forp > 1), as had been anticipated
We can obtain still more information about the eigenvalugy Fig. 5. By contrast, ford/R; = I/s = 0.4, we see in

curvesy(C) by noting in Figs. 4 and 5 that the functigtf(y)  Fig. 8 that theTEq 4-mode curve broadens and flattens over

diverges agw| goes to infinity. Upon using the asymptotica relatively large range of the paramet@r In this particular
forms of Bessel and Neumann functions for large argumertase, the singular points ¢f(y) are associated with a zero-
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Fig. 6. Eigenvalue curves for modé&¥s, , with 1 < p < 4 in a corrugated

coaxial cavity wherel/R; = 0.40 and!/s = 0.20. (The angular coefficient Fig. 8. Eigenvalue curves for mod&¥s, , with 1 < p < 4 in a corrugated

of the dashed straight lings= x/C' correspond to the zeros of the functioncoaxial cavity withd/R; = 1/s = 0.40. (The dashed straight lings= x/C

f(y)) are drawn with angular coefficientss and y., ,,, which correspond to the
first zero and the singular points of the functigty).)

10 ; T T T

.
=8

Fig. 7. Eigenvalue curves for mod&@s , in a corrugated coaxial cavity

with d/R; = 0.20 and!/s = 0.40. (In this case, the curves with > 1  Fig. 9. Eigenvalue curves for mod&sEq, > and TE; 3 in a corrugated

exhibit only one minimum.) coaxial cavity withd/R; = I/s = 0.75. (The dashed curves refer to the
smooth coaxial cavity.)

derivative dx/dC, as pointed out by (14); therefore, all the o

x(C) curves have zero slope when crossing the {ine , 1 numberm = 6. _Thls yields that t_he tangent to _the_ Curye, 1

corresponding to the first singular pointigt; ~ 1.257, which ~rough the point” (corresponding to¢ = 6) coincides with

explains the flatness of the main portign > y > v, ; of the Img connecting this point and the origin @t= 0 since,

the curves. Fory > 1, the singular points off(y), or the 2according to (I4)dx/dC = x/C for m = x. .-

poles ofw are approximated by, , = (2p — 1)x /(2d/R;) We conclude this section by highlighting the potentialities of
s, p — Al

and it is apparent that the upper curvas, and x s exhibit mode se_lectlon in corrugated coaxial cavities. Co_n5|der|ng the
. ; A o corrugation parameterd/R; = l/s = 0.75, the eigenvalue
secondary plateaus in the neighborhood of the intersection
. . g . curves for the mode§’E, > and TE; 5 take on the form
points on the lineg = y, » = 3.757 andy = y,, 3 = 6.257. - ’ : -
2. . _shown in Fig. 9, where the slopes of the curve€'at 5 have
Moreover, forw = 0 or |w| — oo the characteristic equation T hus. if a d d rod (i .
9) reduces, respectively, &, (1).J" (z) — J' ()Y () = 0 opposite signs. T us, if a downtapered ro (|.'e., narrowing to
( T (VY ' . Y" N 81 " om Vi m that th the cavity output) with average radiig = Ro/5 is used, then
or. m(xl) ’"(yf) e ’."(y) ?’E(x) _d ' b us 1mp y_mg a q € th TEy, »-mode diffractive factoxy can be greatly enhanced
eigenvalue ot a given mode becomes indepen ent g—[S] relative to that of the competing modEE, 3. Such
the corrugation parameters in these Im_ntmg cases. We ¢ ethod can be employed in highly overmoded cylindrical
conclude, therefore, that the alternate intersection pomscavities so as to provide an effective mode selection in

and Z in Fig. 3 correspond to the poles and zerosaf megawatt gyrotrons.
respectively. We also see in Fig. 8 that the, line does

not intercept theTEg ;-mode curve. Such a lowest order
mode with circumferential variations is very insensitive to
the presence of the corrugated rod and has a unigue featur€he ohmic( factor of a resonator gives a measure of the
in exhibiting transverse eigenvalues lower than the azimuth@dwer dissipated in the conducting walls and is determined

IIl. ENERGY STORAGE AND OHMIC @ FACTOR
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by calculating the time-averaged enetored in the cavity the left-hand side of (17), and substitute (17) and (18) in
and then evaluating the average power dissipdtgihto the (15), an expression for the ohmi@Q factor is obtained, as

walls, i.e., shown in (19), at the bottom of this page, Wheé€& (y4)) =
o (1/k,d) fyyd G?*(y)dy and the normalization factod,,, is
Qo = % (15) expressed by (20), shown at the bottom of this page. Note that
d

the term in brackets is exactly the functigity) as defined
wherewy is the angular frequency of the field, assuming nim (12), i.e.,

losses. The stored energy is written in the form _
¥ A2 = n{(@® - m)C(2) — L)W} (21)

L
£ = 6_0/ [V (2)|]? dz/ |E(r, $)|? dA (16) As an illustration of these relations, we consider a cavity
2 Jo A with external guide of radius®y = 3.4 cm and inner rod
with L and A denoting the length and cross-section area ¥fith corrugation paramete$/R; = 0.5 andl/s = 0.25 and
the cavity, respectively. In evaluating the surface integral, tHé = 36 slots; conductivities obo = 3.8 x 10” S/m (copper)
interaction space and slot region are considered separat@Réoi = 2.5 x 107 S/m (aluminum) are assumed for the outer
then, substituting the expressions given in (1) and (3) for t@&d inner cylinders, respectively. For this cavity, the transverse

electric fields, the result is eigenvalue of the moddE, ;, its associated), factor, and
the normalization parameterrA;l% are shown as a function
/ |E(r, ¢)|> dA of the coaxial variabl€” in Fig. 10. The points3, C, ---, H
A lying on thex(C) curve correspond to the zeros ffy), and
— 1 A2 2 _ 202 the interlaced points labeled as= 0 or w = ~c are those at
" m”{(x m)Cm (@) which the reactances has a zero or a pole. In Fig. 10, we first

— (1?2 — mH)+wy? — 2yw)C2 (y)+12C2 (y)  seethat botig ande;l% are oscillatory functions af’ with
s w s 2 the maxima on ther A2 curve correlating with they = oo
2 Ya ~2 . . mp .
[7 w—2—+ 7<1 -G (yd)ﬂ } (17)  points. In fact, since > m and noting tha€,, (r) = 2/(rz),
Y Y (21) can be rewritten asA;2 ~ 4 — #%CZ,(y) f(y); thus the
where the contribution arising from the slot resonators &eros off(y) give a value of about four for the normalization
represented by the last term in brackets. The currents flowipgrameter, as indicated by the dotted line in Fig. 10. Now

in the metal walls generate the ohmic power la8s = letting ¥ > 1 and taking the limit ajw| — oo, the last

(Rs/2) [ |Hean|? dA whereR, = woud/2 is the surface resis- eduation yields

tivity and 6 = (2/wpuo)'/? is the skin depth withr denoting L ) d/R;

the conductivity of the metal. Substituting the axial magnet?&Amp =4-x <1 - I/s )

field components given in (1c) for the interaction region and in 1 / 1 1 2

(3b) for the slot region, and neglecting the transverse magnetic- A @V ) = SV @)} (22)
field components since the gyrotron operates close to cutdfherefore, since in our examply R; > [/s, a maximum for
i.e., k| < ki, we get (18), shown at the bottom of thiSer;j) occurs aroundv = oo wheny >> 1. Even though the
page, where the terms in brackets give the power lost hByial magnetic-field componerit,, as given in (3b), is zero
the inner rod, i.e., on the top wall, base wall, and sidewalh the corrugated top surface at= R; when |w| — oo,

of the slots, respectivelyy is the impedance of free spacehe corresponding)g, factors attain the lowest values; in this
and R, o and R, ; indicate the surface resistivity of the outercondition, the slot depth is about equal to a quarter-wavelength
and inner walls. If we normalize to unity the integral or{sincew = (I/s) tan k, d in the approximationy >> 1) and,

2 L R;
Py = 7rA72np k—JQ‘ / |V(Z)|2 dz{R&oRonn(a:) + RSJCfn(y) R; <1 — £> + (Rz — d) £ GQ(yd) + N GQ(/{JJ_T) d7] }
n Jo § § R;—d
(18)
R AZ ) (mx?
Qa =T /) (19)

3

o+ 2 (- D4 (1- )+ L + 2 (62

= w{t - - eawwr -y +wn =2 (Gt + L (1- B )|} (20)
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Fig. 11. Schematic of the cold-test measurement apparatus.
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Fig. 10. OhmicQq, factor, normalization parameteﬂg@%, and transverse
eigenvalue as function of the coaxial variatldor the TE 5 mode operating
in a cavity with Ry = 3.4 cm and corrugation parametedg R; = 0.50,
I/s = 0.25, and N = 36 slots. (Conductivities obg = 3.8 x 107 S/m
(copper) andry = 2.5 x 107 S/m (aluminum) are assumed for the outer and
inner cylinders, respectively.)

10.50 19.75

1575

accordingly, the dissipated power in the inner rod arises from
the bottom and side surfaces of the slots. On the other ha
the slot, in the sense of a short-circuited transmission line, act
as a resonant circuit when = 0, thus giving the highest), e
factors (see Fig. 10). °
Finally, combining the termwJ,,(y) + J/,,(y) in brackets
on the right-hand side of (11) with the characteristic equation
(9) gives

Fig. 12. Schematic diagram (dimensions in centimeters) of the corrugated
coaxial resonator tested. (Corrugation parameters idre = 0.42,

w.]m(y) + 'Jr’n(y) — Cm(a:) d/R; = 0.10, and N = 40 slots.)

CJy(z) B Crn(y) .

Substituting this result in (11) and using (21), the slope ) _ )
function dx/dC is recast in compact form as determined from frequency readings at the half-points on the
dx

detected spectrum.
= —7w A2 yf(y)C2(y) The outer structure of the coaxial cavity (see Fig. 12) is a
dc v weakly irregular guide which comprises a straight cylindrical
with ¥ = x/C > 0. This proves thatly/dC andyf(y) have section joined to two linear tapers. Notice that the taper angles
opposite signs, as previously discussed in Section Il. are made small<5°) so that we ignore the conversion of a
waveguide wave into other wave modes upon its reflection
from the critical cross section. An electro-forming technique
was used to fabricate the outer guide in a single copper piece

for which an electrical resistivity of, = 3.8 x 107 S/m has

L . . been assumed. The corrugated inner conductor is a 3.00-cm-
A schematic diagram of the experimental setup is Sho"mameter cylinder made of aluminun;(= 2.5 x 107 S/m)

in Fig. 11. The source of probing radiation was a sweegpy, corrugation parameterd/R; = 0.10, [/s = 0.42, and
oscillator incorporated into a network analyzer, which Proxy — 40 slots.

vided transmission measurements in the examined frequency
range from 8 to 16 GHz. TE modes were excited by means _
of an electric probe introduced into a 2.0-mm-diameter hoRe Calculation of Resonant Frequency and TagaFactor

drilled in the midsection of the outer guide. To collect the Assuming single-mode approximation, resonant frequency,
power reradiated by the quasi-stationary field, a pyramidahd diffractive@ factor (@p) are determined from the com-
horn antenna connected to a detector was placed in frhx eigenfrequency = fg+1fr, which renders the equation
of the output section of the cavity. For each mode undésr the longitudinal distributionV’(z) of the electromagnetic
observation, the exciting probe and receiving antenna wdda
properly oriented so that the observed resonance curve on
the network analyzer display could be symmetrical and as
narrow as possible. Thg measured was the tot@ as directly

(23)

(24)

IV. EXPERIMENT AND COMPARISON WITH THEORY

A. Description of the Experiment

d*V ()
dz?

+ (47T2f2/02 - ki, rnp)v(z) =0 (25)
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modes are associated with the high@st factor, as shown in
Table I. On the other hand, volume modes with< 4 [see
Fig. 13(b)] are strongly affected by the corrugations, having
their Q, factors reduced from typical values of 12000 (in the
smooth-wall case) to 6008 7000 in the corrugated cavity.
Measured resonant frequencies af)g: factors are also
given in Table |, where good agreement between theory and
experiment is found, in that the magnitude of the relative
error in frequency is below 0.5%. A few comments, however,
are in order. First, we note that for higher frequency volume
modes 12 GHz), the measured frequency is higher than the
predicted one, while the converse occurs for surféts,, |
modes withs < m < 9. On considering that surface modes are
insensitive to the presence of the coaxial insert, we conjecture
that the systematic positive errors associated with volume
modes are due to geometrical effects of the corrugations rather
than experimental uncertainties in individual measurements.
This suggests that corrections should be made to the predicted
frequencies of higher frequency modes. The correction may
be accounted for on the basis of the effect of a finite number
of slots per wavelength [7], which causes a reduction of
the effective depthd. The number of slots per wavelength
is determined by the frequency of operation and mechanical
manufacturing restrictions, so that the present corrugated rod
(0) is contemplated with eight slots per wavelength at 16 GHz.
Fig. 13. Dependence of transverse eigenvalug , on coaxial parameter By a simple transmission-line analysis, it is shown [7] that
C for (a) surface and (b) volum&E,, , modes. (The dashed straight lineqn the free-space side of the corrugations, the coaxial insert
corresponds to the desigri-value of 2.24 and the right vertical scale gives S .
the cutoff frequencyfe (GHz) = (15/7)\mp/Ro for Ro = 3.36 cm.) appears as a corrugated surface with infinite number of slots
per wavelength, but with a smaller depth

soluble subject to appropriate radiation boundary conditions , In 2
at the cavity ends d'=d-— Tl (27)
dV(z) provided that <« A, as we considered in our design. Although

+ i(47r2f2/62 - ki, rnp)l/QV(z)

2in, Zour = 0- (26)

this result strictly applies ifR; > A, measurements indicate

. _ ~[9] that it is valid approximately even whef; > 0.6,
Numerically solving (25), wherety .., = xmp/Ro(2) IS such that, for the present cavity, this translates iffito>

the transverse wavenumber with,,,(C(z)) obtained from 12 GHz. Thus, substituting in (27) the design valules=

the characteristic equation (9), thgp factor is evaluated j o mm, andd = 1.5 mm givesd’ = 1.3 mm. Considering

as Qp = fr/2f;. Taking into account the ohmic lossespow the corrected corrugation parametfR; = 0.09 for
which always decrease the resonant frequency, the calculqﬁﬁjher frequency %12 GHz) volume modes, the resonant
quantities to be compared with those from the experiment gf@quencies and); factors are recalculated and displayed in
f=Ffry/1-1/Qq andQr = QpQq/(Qp + Qq) with the  Taple 11. We notice that the theoretical frequencies are always

dz

ohmic Qg factor given by (19). higher than the experimental values (or almost coincident for
TE3 » and TE; » modes, shown in Table I) with a negative
C. Comparison systematic error less than 0.5% in magnitude. As for the

Q7 values, it is seen in Tables | and Il that, in any event,

To compare theory with experiment, we detected OV@lo agreement between theory and experiment lies within
the range 8-16 GHz all the fundamental TE modes in ”é‘?(perimental accuracy.

corrugated cavity of Fig. 12. The dependencexgf , on

C for these modes is given by the solid line, shown in
Fig. 13, where the dashed curves refer to the corresponding
modes in the smooth-wall coaxial cavity. We can see that, The resonant properties of gyrotron coaxial cavities with a
relative to the smooth cavity, the effect of the corrugatioriengitudinally slotted inner cylinder were investigated on the
is toward decreasing the eigenvalye, ,, and, accordingly, basis of a surface impedance model with the requirement that
the cutoff frequency; nevertheless, surfdde,,, ; modes with the slot width be less than a half-wavelength of the operating
5 < m < 9 [see Fig. 13(a)] are essentially insensitive tdE mode. As gyrotron cavities operate near cutoff, their
the presence of the inner conductor of our 2.24-degign selective properties are mainly expressed by the dependence
corrugated cavity. This is consistent with the fact that sudf the transverse eigenvalug,, , on the coaxialC. The

V. CONCLUSIONS
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TABLE |
CALCULATED AND MEASURED VALUES OF RESONANT FREQUENCIES
AND @ FACTORS FOR FUNDAMENTAL TE MODES IN THE
CORRUGATED COAXIAL CaviTy OF FIG. 12

Calculated Moeasured Percent Error
TEy f Q . 4 . fo_f
Viode . b Qu Qq f+ ?xlO Qy _exp__ theo,
|Gz [GHz] fireo

5,1 9.0702 760 15010 724 9.0558 717 £25 -0.16

6,1 10.6373 1067 15182 997 10.6168 992 + 30 -0.19

7.1 12.1749 1447 15150 1321 12,1512 1279 + 60 -0.19

8.1 13.6953 1858 15052 1654 13.6668 1518 + 80 -0.21

9,1 15.2048 2332 14937 2017 15.1791 1946 + 50 -0.17

1,2 8.3044 649 5794 584 8.2899 568 +40 -0.17

2.2 9.1519 790 6018 698 9.1569 706 +25 10.05

3.2 10.4587 1029 6458 887 10.4659 1037 £ 90 10.07

42 12.0963 1382 7200 1159 12,1169 1143 + 100 +0.17

5.2 13.9343 1900 8340 1547 13.9700 1535+ 70 10.25

6,2 15.8609 2524 10064 2018 15.8928 1938 + 100 +0.20

0,1 8.0092 604 5725 546 7.9749 514 £35 -0.43

0,2 15.6584 2664 7288 1951 15.7328 1873 + 80 10.47

1.3 15.7945 2710 7264 1974 15.8191 1948 + 60 +0.15

TABLE 1
MEASURED AND RECALCULATED VALUES OF RESONANT FREQUENCIES
AND Q7 -FACTORS FORHIGHER FREQUENCY MODES TAKING
INTO ACCOUNT A REDUCED CORRUGATED DEPTH
Recalculated Measured Percent Error
TE _
Mode f Or f+6x10* Qr for ~freo
[GHz] [GHz] fineo

42 12.1551 1193 12.1169 1143+£100 -0.31
5,2 13.9976 1588 13.9700 1535+ 70 -0.20
6,2 15.9233 2095 15.8928 1938+ 100 -0.20
0,2 15.7328 2008 15.7328 1873+ 80 -0.06
1,3 15.8191 2033 15.8191 1948+ 60 -0.38

question about how the corrugation parameters affect thember of slots—the predicted frequencies are consistently
shape of thex,, ,(C) curves was clarified by analyzing anhigher than the measured values within a relative error of
expression derived for the slope functidy.,, ,/dC. It was —0.5%.
shown that the sign oflx...,/dC is opposite to that of the In conclusion, it follows that the surface impedance model
function f(y)—whose definition explicitly encompasses th@roves to be an effective tool in the analysis of corrugated
corrugation parameter$/R;, l/s, and the azimuthal index:  coaxial cavities. Such structures are relevant for megawatt
of TE,,, , modes. A wealth of information about the behaviogyrotrons where highly selective resonators are required to
of the x,,, ,(C) curves is contained in this function, and ansure high conversion efficiency.
number of examples were given to illustrate its usefulnessAs reported in recent gyrotron experiments, output powers
in anticipating the shape of.. ,(C) without solving the in excess of 1 MW with conversion efficiencies on the order of
characteristic equation (9). In connection with this, it wa80% have been measured for high-ordiéfs;; ;7 andTEqs 16
demonstrated that, irrespective of the azimuthal index valuapdes at 165 [10] and 140 GHz [11], respectively. We stress
whend/R; = I/s the x,, »(C) curve is flat over a wide range again that a major technical restriction on the level of the
of C, while if d/R; < /s, the x,,, ,(C) curve exhibits only radiated microwave power at long-pulse (second duration) or
one minimum. These peculiarities can be helpful in desigiontinuous wave (CW) operation is posed by ohmic losses in
methods whereby an optimum set of valuesdg¢R; andl/s the resonator walls. For presently available cooling techniques,
is to be chosen to give a desired mode spectrum. the ohmic heating density cannot exceed the upper limit of
The theory was compared with experiment in which res@4 kwi/cn? and, accordingly, the RF electric-field strength
nant frequencies an@ factors were measured for TE modednside the cavity should be typically restricted to tens of
operating over the range 8-16 GHz in a cavity with?; = kilovolts/centimeters. According to the Kilpatrick criterion
0.10, I/s = 0.42, and N = 40 slots. Good agreement was[12], the breakdown electric field at microwave frequencies
found in that the magnitude of the relative error in frequency &s given byE,,.(V/m) = 0.8 x 103y/f(Hz) is well above the
below 0.5%. Moreover, if the slot depth is corrected for highenaximum electric-field intensity ensued from ohmic heating
frequency volume modes—to account for the effect of a finitmonsiderations. Moreover, electrical breakdown near the sharp
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edges of the corrugations is of no concern since the slot wic'* Rafael A. Correa received the B.S. degree in
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