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Gyrotron Coaxial Cylindrical Resonators
with Corrugated Inner Conductor:

Theory and Experiment
Joaquim J. Barroso, Rafael A. Corrêa, and Pedro José de Castro

Abstract—Gyrotron coaxial resonators with a longitudinally
slotted inner cylinder are examined analytically using a surface
impedance model, from which expressions for the electromagnetic
field, ohmic quality (Q) factor, and characteristic equation of the
transverse eigenvalues�m;p are obtained. The major attributes
of such resonators are expressed by the dependence of�m;p on
the parameter C—defined as the ratio of the outer to inner
radii of the coaxial structure. In that connection, the effect of
the corrugation parameters on�m;p is particularly investigated
on the basis of an expression derived for the slope function
d�

m;p;p
=dC. It is shown that the �m;p(C) curve may either

exhibit oscillatory behavior or present a flat portion over a wide
range of C depending on the corrugation parameters chosen.
The theory is checked against experiment in which resonant
frequencies and totalQ factors were measured for TE modes
operating in the range of 8–16 GHz in a coaxial cavity with
40 slots. Good agreement is found in that the magnitude of the
relative error in frequency is less than 0.5%. Corrugated coaxial
resonators proves to be relevant to megawatt gyrotrons where
highly selective cavities are required to ensure high conversion
efficiency.

Index Terms—Corrugated coaxial cavities, gyrotron cavities,
surface impedance model.

I. INTRODUCTION

I N THE development of high-power high-frequency gy-
rotrons, a major design constraint is the ohmic heating

density of the cavity walls. To circumvent this problem, a
very large (in the wavelength scale) overmoded cavity must
be used in order to keep the ohmic losses at the acceptable
limit of 3–4 kW/cm for currently available cooling tech-
niques. As the resonator cross section gets larger, the spectrum
of eigenfrequencies becomes densely populated, leading to
the possibility of mode interaction [1]. When simultaneous
resonant interaction between several modes and the electron
beam takes place, the gyrotron operation may be unstable.
In addition, multimode oscillation causes a deterioration of
the coherence and directivity of the generated radiation, gives
rise to trapped modes and, in general, decreases the gyrotron
efficiency.

An effective means in mode selection is provided by ad-
justing the electron-beam radius to ensure strong coupling
between the operating mode and the beam. However, as
the gyrotron is scaled to megawatt powers at high frequency

Manuscript received June 18, 1997; revised February 16, 1998.
The authors are with the Laboratory of Plasma, National Institute for Space

Research (INPE), 12201-970 São Jośe dos Campos, S̃ao Paulo, Brazil.
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( 170 GHz) to meet the electron cyclotron resonance heating
requirements for high-magnetic-field plasma configurations
such as the international thermonuclear experimental reactor
(ITER) [2], the spectrum of eigenmodes turns out so dense
that it is necessary to employ still more precise methods
of mode selection. Additional potentialities of rarefying the
eigenfrequency spectrum as well as lowering the total quality
( ) factor of the competing modes can be achieved with the
introduction of a coaxial insert into the open empty cylindrical
resonator [3], [4]. Such a method of electrodynamic selection
arises from the dependence of the transverse eigenvalues
upon the coaxial parameter , defined as the ratio of the
outer to inner radii of the coaxial resonator. Modes with close
values of , but distinct derivatives , will have
diverse axial structures and, as result, different diffractive
factors. It follows that an appropriate choice of the geometry
of the inner conductor leaves the operating mode essentially
unaffected by the presence of the insert, whereas potentially
competing modes have their diffractive factors decreased.

Selective properties of coaxial cylindrical resonators can be
further extended by the introduction of longitudinal corruga-
tions on the inner conductor. Different from smooth coaxial
cavities, a remarkable peculiarity of the function ,
which results from the consideration of a corrugated inner wall,
is the existence of extremes for circularly symmetric
modes upon selecting suitable corrugation parameters, namely,
the slot depth and corrugation period. Thus, corrugated coaxial
cavities offer greater flexibility of handling mode-selection
problems in gyrotron resonators. Although some useful design
criteria have been given in previous works [5], [6], neither a
more general consideration of corrugated coaxial cavities nor
specific cold tests to validate the theory have yet been done.

In this paper, we make a systematic study of corrugated
coaxial gyrotron cavities by examining the role played by the
corrugation parameters in establishing the dependence of
on . This question is addressed in Section II, where a surface-
impedance model is used to describe the boundary conditions
at the corrugated inner wall. An explicit expression for the
slope function is then obtained, which provides
added insight into the selective properties of corrugated coaxial
cavities. In Section III, taking into account the RF field
inside the corrugation region, the energy-storage problem
is studied, leading to an analytic formula for the ohmic

factor. An experiment to verify the values of resonant
frequency and total factor anticipated by theory is described

0018–9480/98$10.00 1998 IEEE



1222 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 9, SEPTEMBER 1998

in Section IV, where measured and calculated results are
compared. Section V contains the conclusions of our work.

II. EIGENVALUES IN CORRUGATED COAXIAL

CYLINDRICAL RESONATORS

Let us consider a corrugated cylindrical cavity with ge-
ometry, as shown in Fig. 1, where the coaxial insert is a
longitudinally slotted cylinder. Instead of using space harmon-
ics [7] in the formulation of the electromagnetic-field problem,
we shall proceed with a simpler method, usually referred to
as the surface-impedance approach [8]. The method relies on

the assumption that the ratio between the tangentialand

fields can be expressed as an impedance-type boundary
condition, and that such a ratio must be given unambiguous
in terms of the geometry of the corrugated wall. Under the
condition that the slot width is less than a half-wavelength
of the operating mode, which means that the field variation
along a slot interval in negligible, the corrugations may be
represented by a homogeneous reactive surface at
(see Fig. 1). The approximation improves as the number of
slots per wavelength increases and the thickness of the ridge
decreases. Therefore, when space harmonics are neglected, the
field components for modes in the annular region are
those in a coaxial guide with smooth walls

(1a)

(1b)

(1c)

where with the cylinder
function of order

(2)

where and are, respectively, Bessel functions of the
first and second kinds with primes denoting differentiation
with respect to the argument; is a normalization parame-
ter to be determined in Section III, is a function expressed
in volts describing the longitudinal profile of the fields, and

is the transverse eigenvalue. We have assumed
a harmonic variation for the electromagnetic field.

Provided that , there is no azimuthal propagation
of energy inside the slots, as high-order TE modes are below
cutoff. Thus, we shall take in the slots only the lowest order
TE mode, which has the following components:

(3a)

(3b)

Fig. 1. Cross section of a corrugated coaxial cylindrical cavity. (The cor-
rugation periods, slot width l, number of slotsN , and slot angle2�s are
related byN�s=� = l=s.)

(3c)

where denotes the number of slots andis the slot index.
In the wall reactance model, it is assumed thatacross each
slot is constant and, further, that the field at any slot differs
from the field at a neighboring slot only by a constant phase
factor , with the total phase shift around the periodic
structure being a multiple of (Floquet’s theorem). Notice
in (3a) that at .

The characteristic equation for the transverse wavenumber
is obtained by applying continuity conditions to the surface
reactance at . Thus, the reactance looking into the
interaction space from the slots across the boundary is matched
to the reactance viewed from interaction space and averaged
around the circumference at

(4)

Then, using (2)–(4) and letting as gyrotron resonators
operate close to cutoff, we obtain at

(5)

where is a surface reactance
normalized to the impedance of free space and

(6)

where

for all other values of

with denoting the slots angle. In this way, the corrugated
surface is represented in terms of a surface boundary condition
involving only the interaction space fields, thereby converting
a two-media problem into a single one.
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Fig. 2. TE6; 3—mode eigenvalue�(C) curves withd=Ri as parameter.

Fig. 3. TE6;3—mode eigenvalue�(C) curves withl=s as parameter.

Noting that , (5) is rewritten as

(7)

which gives the characteristic equation for the transverse
eigenvalues , where with

and .
To examine the effects of the corrugation parameters,

namely, the relative slot-depth and the parameter
defined as the slot-opening normalized to the ridge-slot
period (Fig. 1), we plot in Figs. 2 and 3 the -mode
eigenvalue curves having, respectively, and as
parameters. Firstly, we see that the curves are shifted
downward relative to the eigenvalue curves for the smooth-
wall case . This means that the cutoff frequency
is decreased since the electric field penetrates into the slot
region, thus increasing the resonating volume. This is similar
to the ohmic effect in a smooth cavity, in which a resonant
frequency in a lossy cavity is always less than in a cavity with
perfectly conducting walls.

Secondly, different from the smooth-wall case, for which
the eigenvalue increases without limit as , a noticeable

effect is that the eigenvalue for the corrugated cavity is limited
as . This limiting value can be easily estimated by
noting that as , the numerator of the right-hand
side of (7) tends to zero. Then, we must have , i.e.,

. Using the asymptotic forms of Bessel and Neumann func-
tions for large arguments, we arrive at
or where is an integer denoting
the radial-mode number. For and , we see
that at , as shown in Fig. 2. The mode
propagating radially in the annular-sector resonator strongly
resembles the mode of the rectangular guide, although
modified by the convergence of the slot sides.

We also note in Fig. 3 that all the curves intersect regularly
at some points and, moreover, for , the curve
flattens with its slope approaching zero at the intersection point

. To investigate the effect on the curve shape, varying
the corrugation parameters, we shall look at the extremes of
the eigenvalue curves. By expressing the derivative of
with respect to in the form

(8)

where

(9)

with

(10)

we arrive at

(11)
where

(12)

with

(13)

As will be shown in Section III, the denominator of the right-
hand side of (11) is always positive. Hence, the sign of the
derivative is opposite to the sign of and, further,
the condition for obtaining an extremum of is given
by . To illustrate this point, we show in Fig. 4 the
function corresponding to the corrugation parameters

, , and azimuthal number . The
zeros of are assigned by the labels fromto and, for
comparison purposes, the dashed curve represents the function
in the smooth-wall case . Examining this plot, we can
anticipate the behavior of the eigenvalue curves for the family
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(a)

(b)

Fig. 4. (a) Functionyf(y) associated with corrugation parametersd=Ri =
0:4, l=s = 0:2, and azimuthal numberm = 6. (The corresponding zeros
are labeled fromA to F and the dashed line represents the function for the
smooth wall case(w = 0). The plots are shown in greater detail in (b),
where the second zero labeled asB is shifted to highery values relative to
the w = 0 case.)

of modes with radial number . As the variable
is the ratio of eigenvalue to parameter , the first zero

at , shown in the expanded plot of Fig. 4(b), implies
that the eigenvalue curves tend asymptotically to
with zero slope. This limit corresponds to the hollow
cylindrical resonator for which the determinantal equation (9)
reduces to .

Since in the range , as shown in
Fig. (4), the slope is positive in this range with

corresponding to the first local minimum on the
curve. From to , the derivative is negative and

should correspond to a local maximum. Further,
gives a minimum, is a maximum, and

so on. For this case, we may infer, therefore, without solving
the characteristic equation (9), that the function has
an oscillatory behavior with alternating minima and maxima,
with the oscillation period shortening asincreases. On the
other hand, the function displays a different behavior
when the following corrugation parameters and

are considered. In this case [see Fig. 5(a)], there
exists only one minimum; after reaching this minimum at

[see Fig. 5(b)] the curves with
should exhibit negative slope.

We can obtain still more information about the eigenvalue
curves by noting in Figs. 4 and 5 that the function
diverges as goes to infinity. Upon using the asymptotic
forms of Bessel and Neumann functions for large arguments

(a)

(b)

Fig. 5. (a) Functionyf (y) associated with corrugation parametersd=Ri =
0:2, l=s = 0:4, and azimuthal numberm = 6. (The dashed line represents the
function for the smooth wall case(w = 0). For these corrugation parameters,
the function possesses only two zeros and, as shown in (b), the second zero
is shifted to lowery values relative to thew = 0 case.)

in (10), we have and (11) reduces to

(14)

as . Recalling that the denominator of the right-hand
side of (14) is positive, we see for that the
derivative is positive and, accordingly, diverges
to minus infinity, as shown in Fig. 4; the converse occurs for

and, as , the limiting value of
is , as shown in Fig. 5. In the particular case when

, we have associated with the
singular points of .

Now considering the corrugation parameters
and , shown in Fig. 6, we examine the eigenvalue
curves of modes with radial indices ranging from
to . The dashed straight lines, labeled from to ,
are drawn with slopes that correspond to the zeros of
in Fig. 4. If we make a correlation between these plots, it is
apparent that the first minimum of the curves lies on

, whereas the first local maxima are joined by .
In Fig. 7, we plot the eigenvalue curves for modes

considering and , which yield only
one point of minimum (for ), as had been anticipated
by Fig. 5. By contrast, for , we see in
Fig. 8 that the -mode curve broadens and flattens over
a relatively large range of the parameter. In this particular
case, the singular points of are associated with a zero-
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Fig. 6. Eigenvalue curves for modesTE6; p with 1 � p � 4 in a corrugated
coaxial cavity whered=Ri = 0:40 and l=s = 0:20. (The angular coefficient
of the dashed straight linesy = �=C correspond to the zeros of the function
f(y).)

Fig. 7. Eigenvalue curves for modesTE6; p in a corrugated coaxial cavity
with d=Ri = 0:20 and l=s = 0:40. (In this case, the curves withp > 1
exhibit only one minimum.)

derivative , as pointed out by (14); therefore, all the
curves have zero slope when crossing the line

corresponding to the first singular point at , which
explains the flatness of the main portion of
the curves. For , the singular points of , or the
poles of are approximated by ,
and it is apparent that the upper curves and exhibit
secondary plateaus in the neighborhood of the intersection
points on the lines and .
Moreover, for or the characteristic equation
(9) reduces, respectively, to
or , thus implying that the
eigenvalue of a given TE mode becomes independent of
the corrugation parameters in these limiting cases. We can
conclude, therefore, that the alternate intersection points
and in Fig. 3 correspond to the poles and zeros of,
respectively. We also see in Fig. 8 that the line does
not intercept the -mode curve. Such a lowest order
mode with circumferential variations is very insensitive to
the presence of the corrugated rod and has a unique feature
in exhibiting transverse eigenvalues lower than the azimuthal

Fig. 8. Eigenvalue curves for modesTE6; p with 1 � p � 4 in a corrugated
coaxial cavity withd=Ri = l=s = 0:40. (The dashed straight linesy = �=C
are drawn with angular coefficientsyB and ys; p, which correspond to the
first zero and the singular points of the functionf(y).)

Fig. 9. Eigenvalue curves for modesTE0; 2 and TE1; 3 in a corrugated
coaxial cavity withd=Ri = l=s = 0:75. (The dashed curves refer to the
smooth coaxial cavity.)

number . This yields that the tangent to the curve
through the point (corresponding to ) coincides with
the line connecting this point and the origin at since,
according to (14), for .

We conclude this section by highlighting the potentialities of
mode selection in corrugated coaxial cavities. Considering the
corrugation parameters , the eigenvalue
curves for the modes and take on the form
shown in Fig. 9, where the slopes of the curves at have
opposite signs. Thus, if a downtapered rod (i.e., narrowing to
the cavity output) with average radius is used, then
the -mode diffractive factor can be greatly enhanced
[3]–[5] relative to that of the competing mode . Such
a method can be employed in highly overmoded cylindrical
cavities so as to provide an effective mode selection in
megawatt gyrotrons.

III. ENERGY STORAGE AND OHMIC FACTOR

The ohmic factor of a resonator gives a measure of the
power dissipated in the conducting walls and is determined
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by calculating the time-averaged energystored in the cavity
and then evaluating the average power dissipatedinto the
walls, i.e.,

(15)

where is the angular frequency of the field, assuming no
losses. The stored energy is written in the form

(16)

with and denoting the length and cross-section area of
the cavity, respectively. In evaluating the surface integral, the
interaction space and slot region are considered separately;
then, substituting the expressions given in (1) and (3) for the
electric fields, the result is

(17)

where the contribution arising from the slot resonators is
represented by the last term in brackets. The currents flowing
in the metal walls generate the ohmic power loss

where is the surface resis-
tivity and is the skin depth with denoting
the conductivity of the metal. Substituting the axial magnetic
field components given in (1c) for the interaction region and in
(3b) for the slot region, and neglecting the transverse magnetic-
field components since the gyrotron operates close to cutoff,
i.e., , we get (18), shown at the bottom of this
page, where the terms in brackets give the power lost by
the inner rod, i.e., on the top wall, base wall, and sidewall
of the slots, respectively; is the impedance of free space
and and indicate the surface resistivity of the outer
and inner walls. If we normalize to unity the integral on

the left-hand side of (17), and substitute (17) and (18) in
(15), an expression for the ohmic factor is obtained, as
shown in (19), at the bottom of this page, where

and the normalization factor is
expressed by (20), shown at the bottom of this page. Note that
the term in brackets is exactly the function as defined
in (12), i.e.,

(21)

As an illustration of these relations, we consider a cavity
with external guide of radius cm and inner rod
with corrugation parameters and and

slots; conductivities of S/m (copper)
and S/m (aluminum) are assumed for the outer
and inner cylinders, respectively. For this cavity, the transverse
eigenvalue of the mode , its associated factor, and
the normalization parameter are shown as a function
of the coaxial variable in Fig. 10. The points , , ,
lying on the curve correspond to the zeros of , and
the interlaced points labeled as or are those at
which the reactance has a zero or a pole. In Fig. 10, we first
see that both and are oscillatory functions of with
the maxima on the curve correlating with the
points. In fact, since and noting that ,
(21) can be rewritten as ; thus the
zeros of give a value of about four for the normalization
parameter, as indicated by the dotted line in Fig. 10. Now
letting and taking the limit as , the last
equation yields

(22)

Therefore, since in our example , a maximum for
occurs around when . Even though the

axial magnetic-field component , as given in (3b), is zero
on the corrugated top surface at when ,
the corresponding factors attain the lowest values; in this
condition, the slot depth is about equal to a quarter-wavelength
(since in the approximation ) and,

(18)

(19)

(20)
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Fig. 10. OhmicQ
 factor, normalization parameter�A�2mp, and transverse
eigenvalue as function of the coaxial variableC for theTE1; 5 mode operating
in a cavity withR0 = 3:4 cm and corrugation parametersd=Ri = 0:50,
l=s = 0:25, andN = 36 slots. (Conductivities of�0 = 3:8 � 107 S/m
(copper) and�0 = 2:5� 107 S/m (aluminum) are assumed for the outer and
inner cylinders, respectively.)

accordingly, the dissipated power in the inner rod arises from
the bottom and side surfaces of the slots. On the other hand,
the slot, in the sense of a short-circuited transmission line, acts
as a resonant circuit when , thus giving the highest
factors (see Fig. 10).

Finally, combining the term in brackets
on the right-hand side of (11) with the characteristic equation
(9) gives

(23)

Substituting this result in (11) and using (21), the slope
function is recast in compact form as

(24)

with . This proves that and have
opposite signs, as previously discussed in Section II.

IV. EXPERIMENT AND COMPARISON WITH THEORY

A. Description of the Experiment

A schematic diagram of the experimental setup is shown
in Fig. 11. The source of probing radiation was a sweep
oscillator incorporated into a network analyzer, which pro-
vided transmission measurements in the examined frequency
range from 8 to 16 GHz. TE modes were excited by means
of an electric probe introduced into a 2.0-mm-diameter hole
drilled in the midsection of the outer guide. To collect the
power reradiated by the quasi-stationary field, a pyramidal
horn antenna connected to a detector was placed in front
of the output section of the cavity. For each mode under
observation, the exciting probe and receiving antenna were
properly oriented so that the observed resonance curve on
the network analyzer display could be symmetrical and as
narrow as possible. The measured was the total as directly

Fig. 11. Schematic of the cold-test measurement apparatus.

Fig. 12. Schematic diagram (dimensions in centimeters) of the corrugated
coaxial resonator tested. (Corrugation parameters arel=s = 0:42,
d=Ri = 0:10, andN = 40 slots.)

determined from frequency readings at the half-points on the
detected spectrum.

The outer structure of the coaxial cavity (see Fig. 12) is a
weakly irregular guide which comprises a straight cylindrical
section joined to two linear tapers. Notice that the taper angles
are made small (5 ) so that we ignore the conversion of a
waveguide wave into other wave modes upon its reflection
from the critical cross section. An electro-forming technique
was used to fabricate the outer guide in a single copper piece
for which an electrical resistivity of S/m has
been assumed. The corrugated inner conductor is a 3.00-cm-
diameter cylinder made of aluminum ( S/m)
with corrugation parameters , , and

slots.

B. Calculation of Resonant Frequency and TotalFactor

Assuming single-mode approximation, resonant frequency,
and diffractive factor ( ) are determined from the com-
plex eigenfrequency , which renders the equation
for the longitudinal distribution of the electromagnetic
[4]

(25)
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(a)

(b)

Fig. 13. Dependence of transverse eigenvalue�m;p on coaxial parameter
C for (a) surface and (b) volumeTEm;p modes. (The dashed straight line
corresponds to the designC-value of 2.24 and the right vertical scale gives
the cutoff frequencyfc (GHz) = (15=�)�mp=R0 for R0 = 3:36 cm.)

soluble subject to appropriate radiation boundary conditions
at the cavity ends

(26)

Numerically solving (25), where is
the transverse wavenumber with obtained from
the characteristic equation (9), the factor is evaluated
as . Taking into account the ohmic losses,
which always decrease the resonant frequency, the calculated
quantities to be compared with those from the experiment are

and with the
ohmic factor given by (19).

C. Comparison

To compare theory with experiment, we detected over
the range 8–16 GHz all the fundamental TE modes in the
corrugated cavity of Fig. 12. The dependence of on

for these modes is given by the solid line, shown in
Fig. 13, where the dashed curves refer to the corresponding
modes in the smooth-wall coaxial cavity. We can see that,
relative to the smooth cavity, the effect of the corrugations
is toward decreasing the eigenvalue , and, accordingly,
the cutoff frequency; nevertheless, surface modes with

[see Fig. 13(a)] are essentially insensitive to
the presence of the inner conductor of our 2.24-design
corrugated cavity. This is consistent with the fact that such

modes are associated with the highest factor, as shown in
Table I. On the other hand, volume modes with [see
Fig. 13(b)] are strongly affected by the corrugations, having
their factors reduced from typical values of 12 000 (in the
smooth-wall case) to 6000 7000 in the corrugated cavity.

Measured resonant frequencies and factors are also
given in Table I, where good agreement between theory and
experiment is found, in that the magnitude of the relative
error in frequency is below 0.5%. A few comments, however,
are in order. First, we note that for higher frequency volume
modes ( 12 GHz), the measured frequency is higher than the
predicted one, while the converse occurs for surface
modes with . On considering that surface modes are
insensitive to the presence of the coaxial insert, we conjecture
that the systematic positive errors associated with volume
modes are due to geometrical effects of the corrugations rather
than experimental uncertainties in individual measurements.
This suggests that corrections should be made to the predicted
frequencies of higher frequency modes. The correction may
be accounted for on the basis of the effect of a finite number
of slots per wavelength [7], which causes a reduction of
the effective depth . The number of slots per wavelength
is determined by the frequency of operation and mechanical
manufacturing restrictions, so that the present corrugated rod
is contemplated with eight slots per wavelength at 16 GHz.

By a simple transmission-line analysis, it is shown [7] that
on the free-space side of the corrugations, the coaxial insert
appears as a corrugated surface with infinite number of slots
per wavelength, but with a smaller depth

(27)

provided that , as we considered in our design. Although
this result strictly applies if , measurements indicate
[9] that it is valid approximately even when ,
such that, for the present cavity, this translates into

GHz. Thus, substituting in (27) the design values
mm, and mm gives mm. Considering

now the corrected corrugation parameter for
higher frequency ( 12 GHz) volume modes, the resonant
frequencies and factors are recalculated and displayed in
Table II. We notice that the theoretical frequencies are always
higher than the experimental values (or almost coincident for

and modes, shown in Table I) with a negative
systematic error less than 0.5% in magnitude. As for the

values, it is seen in Tables I and II that, in any event,
the agreement between theory and experiment lies within
experimental accuracy.

V. CONCLUSIONS

The resonant properties of gyrotron coaxial cavities with a
longitudinally slotted inner cylinder were investigated on the
basis of a surface impedance model with the requirement that
the slot width be less than a half-wavelength of the operating
TE mode. As gyrotron cavities operate near cutoff, their
selective properties are mainly expressed by the dependence
of the transverse eigenvalue on the coaxial . The
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TABLE I
CALCULATED AND MEASURED VALUES OF RESONANT FREQUENCIES

AND Q FACTORS FOR FUNDAMENTAL TE MODES IN THE

CORRUGATED COAXIAL CAVITY OF FIG. 12

TABLE II
MEASURED AND RECALCULATED VALUES OF RESONANT FREQUENCIES

AND QT -FACTORS FOR HIGHER FREQUENCY MODES TAKING

INTO ACCOUNT A REDUCED CORRUGATED DEPTH

question about how the corrugation parameters affect the
shape of the curves was clarified by analyzing an
expression derived for the slope function . It was
shown that the sign of is opposite to that of the
function —whose definition explicitly encompasses the
corrugation parameters , , and the azimuthal index
of modes. A wealth of information about the behavior
of the curves is contained in this function, and a
number of examples were given to illustrate its usefulness
in anticipating the shape of without solving the
characteristic equation (9). In connection with this, it was
demonstrated that, irrespective of the azimuthal index value,
when the curve is flat over a wide range
of , while if , the curve exhibits only
one minimum. These peculiarities can be helpful in design
methods whereby an optimum set of values for and
is to be chosen to give a desired mode spectrum.

The theory was compared with experiment in which reso-
nant frequencies and factors were measured for TE modes
operating over the range 8–16 GHz in a cavity with

, , and slots. Good agreement was
found in that the magnitude of the relative error in frequency is
below 0.5%. Moreover, if the slot depth is corrected for higher
frequency volume modes—to account for the effect of a finite

number of slots—the predicted frequencies are consistently
higher than the measured values within a relative error of

0.5%.
In conclusion, it follows that the surface impedance model

proves to be an effective tool in the analysis of corrugated
coaxial cavities. Such structures are relevant for megawatt
gyrotrons where highly selective resonators are required to
ensure high conversion efficiency.

As reported in recent gyrotron experiments, output powers
in excess of 1 MW with conversion efficiencies on the order of
30% have been measured for high-order and
modes at 165 [10] and 140 GHz [11], respectively. We stress
again that a major technical restriction on the level of the
radiated microwave power at long-pulse (second duration) or
continuous wave (CW) operation is posed by ohmic losses in
the resonator walls. For presently available cooling techniques,
the ohmic heating density cannot exceed the upper limit of
3–4 kW/cm and, accordingly, the RF electric-field strength
inside the cavity should be typically restricted to tens of
kilovolts/centimeters. According to the Kilpatrick criterion
[12], the breakdown electric field at microwave frequencies
as given by (Hz) is well above the
maximum electric-field intensity ensued from ohmic heating
considerations. Moreover, electrical breakdown near the sharp
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edges of the corrugations is of no concern since the slot width
is less than a half-wavelength of the operating mode and, in
this sense, the corrugated inner conductor, being electrically
smooth, is represented by a reactive surface. In addition,
corrugated coaxial cavities can be useful in guided-wave
applications involving filters, frequency-tunable resonators,
and devices for analyzing the modal composition of a signal.
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A. Möbius, M. Thumm, V. A. Flyagin, V. I. Khishnyak, V. I. Malygin,
A. B. Pavelyev, and V. E. Zapevalov, “A 1.5-MW, 140-GHz,TE28; 16
coaxial cavity gyrotron,”IEEE Trans. Plasma Sci.,vol. 25, pp. 460–469,
June 1997.

[12] W. D. Kilpatrick, “Criterion for vacuum sparking designed to include
both RF and DC,”Rev. Sci. Instrum.,vol. 28, pp. 824–826, 1957.

Joaquim J. Barroso received the B.S. degree in
electrical engineering and the M.S. degree in plasma
physics from the Technological Institute of Aero-
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